Neutrino Self-Interactions

Nikita Blinov

September 17, 2020

NF03 Kick Off Meeting

Based on Lol with Mauricio Bustamante, Kevin Kelly and Yue Zhang SNOWMASS21-NF3-003

Self-Interactions in the SM

 Neutrino self-interactions are some of the most difficult operators to probe in SM EFT

$$\frac{G_F\rho}{\sqrt{2}}(\bar{\nu}_L\gamma_\mu\nu_L)(\bar{\nu}_L\gamma^\mu\nu_L)$$

Need a cosmic ν with E $_{\nu}$ \sim 10 11 GeV to scatter once off C ν B over distance H $^{-1}$ Weiler (1982)

Lots of room for beyond SM contributions

A wide range of motivations

Neutrino Mass Generation

Models with a Higgs mechanism in the neutrino sector

See, e.g., Chikashige *et al* '81 Gu & He '07

A wide range of motivations

Neutrino Mass Generation

Dark Matter

Models with a Higgs mechanism in the neutrino sector

Predictive models of thermal (WIMP-like) or non-thermal (freeze-in) dark matter

See, e.g., Chikashige *et al* '81 Gu & He '07

See, e.g., Kelly & Zhang '19 de Gouvêa *et al* '19 Kelly *et al* '20

A wide range of motivations

Neutrino Mass Generation

Dark Matter

Observational Anomalies

Models with a Higgs mechanism in the neutrino sector

Predictive models of thermal (WIMP-like) or non-thermal (freeze-in) dark matter

Hubble tension alleviated via neutrino self-interactions

See, e.g., Chikashige *et al* '81 Gu & He '07

See, e.g., Kelly & Zhang '19 de Gouvêa *et al* '19 Kelly *et al* '20

Kreisch, Cyr-Racine & Doré (2019)

A wide range of motivations

Neutrino Mass Generation

Dark Matter

Observational Anomalies

Models with a Higgs mechanism in the neutrino sector

Predictive models of thermal (WIMP-like) or non-thermal (freeze-in) dark matter

Hubble tension alleviated via neutrino self-interactions

See, e.g., Chikashige *et al* '81 Gu & He '07

See, e.g., Kelly & Zhang '19 de Gouvêa *et al* '19 Kelly *et al* '20

Kreisch, Cyr-Racine & Doré (2019)

Theoretical:

U(1) anomaly-free extensions of SM include new neutrino couplings: B-L, L_i - L_i ...

Observable Consequences

Accelerators & Lab:

- Rare decays of mesons and taus
- Oscillation and neutrino scattering exp.
- $0\nu\beta\beta$ searches
- ...

Astrophysics

- Cosmic neutrino propagation
- Supernova physics
- Stellar evolution
- ...

Cosmology:

- Microwave background
- Light element abundances
- DM clustering
- ...

These span a huge range of energies, an EFT treatment is not possible

Complementarity Example

Hubble tension can be alleviated by neutrino selfinteractions during the CMB era

$$G_{\rm eff}({\rm SI}\nu) \sim 10^9 G_F$$

Kreisch, Cyr-Racine & Doré (2019)

Complementarity Example

Hubble tension can be alleviated by neutrino selfinteractions during the CMB era

$$G_{\rm eff}({\rm SI}\nu) \sim 10^9 G_F$$

Kreisch, Cyr-Racine & Doré (2019)

Complementarity Example

Hubble tension can be alleviated by neutrino selfinteractions during the CMB era

$$G_{\mathrm{eff}}(\mathrm{SI}\nu) \sim 10^9 G_F$$

Kreisch, Cyr-Racine & Doré (2019)

Goals for this Whitepaper

Define a set of benchmark models

 Comprehensively review phenomena within these common theoretical frameworks

Identify gaps in sensitivity and opportunities

Thank you!